Birzotitunversity
Mathematics Department
Second Semester 2012/2013

Question 1 (8 points)
Given the function

$$
g(x)=\frac{x^{2}-\cos (x)}{5}
$$

a) Using Fixed Point Theorems show that $g(x)$ has a fixed point in the interval $[-1,1]$.
b) Using Fixed Point Theorems show that the fixed point in the interval $[-1,1]$ is unique.
c) Using part b) and $p_{0}=1$ what is the theoretical number of iterations needed by Fixed Point Iteration to get an error less than or equal to 10^{-3}
d) Using $p_{0}=1$ write the results obtained by, Fixed Point Iteration to get an error less than 10^{-3}.
e) Tow many iterations were done in part d)?

Question $2(4 \mathrm{p}$ (Tits)
Given the function

$$
f(x)=e^{x}+x-4
$$

$a_{6} \cdot 6$
a) Calculate c_{1} using Bisection Method on the interval $[0 ; 2]$.
b) Calculate c_{1} using False Position Mecca on the interval $[0,2]$.

$$
\underline{a_{1}-b_{1}-n_{1}} \frac{2+1}{2}=\frac{3}{2}=\frac{1.3}{1}
$$

b) 媇 $c_{0}=b_{0}-\frac{f\left(b_{0}\right)\left(b_{0}-a_{0}\right)}{f\left(b_{0}\right)-f\left(a_{0}\right)}$

$$
=2-\frac{f(2)(2)}{f(2)-f(0)} \rightarrow 2-\frac{2 f(2)}{f(2)+3}
$$

$$
\begin{array}{r}
\rightarrow c_{0}=0.715211532 \\
\Rightarrow c_{1}=b_{0}-\frac{1\left(b_{0}\right)\left(b_{0}-c_{0}\right)}{\left(b_{0}\right)-1\left(c_{0}\right)}
\end{array}
$$

$$
\text { H }(0)=?
$$

$$
c=2-\frac{0(2)(2-0.75217232)}{(12)-0(0.1(521752)}
$$

Patois

$$
\begin{aligned}
& f(2)=e^{2}+2-x=5 \sqrt{4}=05049 ; \\
& x=\frac{b+x}{2} \rightarrow \frac{2+0}{2}=0 \\
& 0 C+=2+1-2=-283871
\end{aligned}
$$

Question 3 （ 4 points）

A plane is taking off and its altitude (x) in meters after (t) seconds is given by the following function

$$
x(t)=e^{\frac{t}{2}-e^{-\frac{t}{2}}-\tau} \quad 2-2
$$

After how many seconds is the altitude 70 meters？Stop iterating when the successive error is

Question (4 points)
a) A matrix A of size $N \times M$ is constructed using the following pseudo -code

$$
\begin{aligned}
& \text { for } i=1 \text { to } N \\
& \qquad \text { for } j=1 \text { to } N
\end{aligned}
$$

end

$$
A_{i, j}=\frac{1}{4 \theta+1} \theta^{1}(\rightarrow(4) 2
$$

enc
Find the cost of evaluating the matrix A.
b) A matrix B of size 3×3 is constructed using the following pseudo-code

$$
\text { for } 1=1 \text { to } 3
$$

for $j=1$ to 3
end
(B) $\square B^{-B_{i, j}}=\frac{1}{i(t))^{1}}+1$
end
Use 4 -digit chopping to evaluate the matrix B.

Nor exch element
A id we have s Additions i subtractions

$$
\& 3 \text { multiplications }
$$

so far each element Ais and since we have NH N matt containing A^{2} elements
the total cost is $8 \mathrm{~N}^{2}$
kn

Question 5 (ponts)
Given the systern

$$
x^{2}+e^{y}+x y
$$

$$
\begin{gathered}
e^{x}+e^{y}-4=x y \\
\sin (x)+\cos (y-4)=0
\end{gathered}
$$

$$
t_{2}=\sin (x) \times \cos (y-4)
$$

ase $\left(p_{0}, q_{0}\right)=(1,0)$ and Newton's method to evaluate $\left(p_{1}, q_{1}\right)$.

$$
\sum A M \quad \cdots
$$

$$
T=\left(\begin{array}{cc}
\frac{\partial t}{\partial x} & \frac{\partial t}{\partial y} \\
\frac{\partial z}{\partial x} & \frac{\partial \theta_{2}}{\partial \lambda}
\end{array}\right)
$$

$$
A+\left(P_{0}, 40\right)=(1,0)(0)
$$

$$
f_{1}=e^{x}+e^{\frac{3}{2}-x y} \rightarrow Q_{1} \rightarrow 2+1-x-0=-0.281+18 \cdot \%
$$

$R D P=0.28179811$

$$
\begin{aligned}
& =0.055 a 46021-0.756802445104=762063 \\
& \text { Thar 122… }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 空 } \\
& D p=0 \quad 103632323 \\
& P-1=0,163638323 \Rightarrow P_{1}=1.163638323
\end{aligned}
$$

